Abstract

The axial shear problem for a hollow circular cylinder, composed of homogeneous isotropic compressible nonlinearly elastic material, is described. The inner surface of the tube is bonded to a rigid cylinder while the outer surface is subjected to a uniformly distributed axial shear traction and the radial traction is zero. For an arbitrary compressible material, the cylinder will undergo both a radial and axial deformation. These axisymmetric fields are governed by a coupled pair of nonlinear ordinary differential equations, one of which is second-order and the other first-order. The class of materials for which axisymmetric anti-plane shear (i.e., a deformation with zero radial displacement) is possible is described. The corresponding axial displacement and stresses are determined explicitly. Specific material models are used to illustrate the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call