Abstract

A linear theory is developed for axisymmetric deformation of thin poroelastic shells of revolution. With fluid solid coupling included through Biot's consolidation theory, results are presented for cylindrical shells with an oscillating internal pressure and various surface boundary conditions on the fluid. First, the effects of fluid flow and shell inertia on the stretching behavior are studied through a separation of variables solution. Then, the bending behavior near a clamped edge is examined through an asymptotic solution of a matrix form of the governing equations. The results show that the asymptotic solution is accurate in the low frequency range, when the loading time is large compared to the consolidation time. In addition, for the examples studied, the fluid flow influences the membrane more than the bending behavior, but damping due to flow resistance is limited near resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call