Abstract

AbstractThis paper presents an analytical solution to predict the axisymmetric consolidation in unsaturated soil deposits subjected to different time-dependent loadings. The mathematical procedure uses the separation of variables and Laplace transformation methods to obtain the final solution. A set of polar governing equations of flow are obtained and presented under the partial differential equations (PDEs), and then the variable separation technique is used to alter the PDEs to ordinary differential equations (ODEs) consisting of distinctive variables. Fourier Bessel and sine series are used to present functions of radial and vertical flows, respectively, and the Laplace transformation is used to obtain a function of time. Four primary time-dependent loading functions, including ramping, asymptotic, sinusoid, and damped sine wave, are mathematically simulated and incorporated into the proposed solutions. This study investigates changes in excess pore-air and pore-water pressures as well as consolidatio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.