Abstract

The results of over 50 new models of the axisymmetric collapse of rotating, isothermal clouds are presented, with the following objectives: (1) to fully explore the initial conditions necessary for collapse from uniform density and uniform rotation, subject to constant volume and constant pressure boundary conditions; (2) to catalog the possible end states for cloud collapse from these initial conditions; and (3) to determine if there is a critical value of rotational energy/gravitational energy associated with ring formation, as appears to be the case for adiabatic clouds. Three end states are obtained: Bonnor-Ebert spheroids, rings and collapsing disks. The rings are formed with values of the ratio of rotational energy to the absolute value of the gravitational energy typically less than the Maclaurin spheroid value for dynamic instability to ring formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.