Abstract

The steady axisymmetric incompressible flow in a droplet sitting on or hanging from a flat plate is calculated numerically. In the limit of large mean surface tension the liquid–gas interface is spherical which allows the use of boundary-fitted toroidal coordinates. The flow is driven by thermocapillary and buoyant forces induced by a linear variation of the ambient temperature normal to the perfectly conducting wall. We present benchmark-quality results for the streamfunction and temperature fields, varying the contact angle, the thermocapillary Reynolds number, the Prandtl number, the Grashof number and the interfacial heat-transfer coefficient including the latent heat of evaporation. Scaling laws for the strength of the flow are provided for asymptotically large Marangoni numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.