Abstract

The slip flow and thermal transfer inside the boundary layer are extremely significant for various problems in aerodynamics, wing stall, skin friction drag on an entity, high-level velocity aircraft, etc. The current research investigated the effect of the slip factor and shape factor on the axisymmetric bullet-shaped object by taking the viscous dissipation parameter and location parameter. The analysis is conducted for both fixed and moving bullet-shaped objects due to thinner and thicker surfaces. The governing equations are transformed into a system of ordinary differential equations using suitable local axisymmetric similarity transformations and solved by applying the spectral quasi-linearization method. A new correlation analysis is made for velocity and temperature gradients. It is observed that the boundary layer structure has no defined shape due to a thicker bullet-shaped object instead it forms a steep angle with the axis which is contradictory to the formation of the boundary layer. A negative correlation is observed for the parameters M, Ec, Q*, and s but a positive correlation is observed for the parameters such as Pr, P, λ, and ε. The surface thickness and stretching ratio significantly affect the fluid flow and heat transfer processes. It is also noticed that the thinner bullet-shaped object performs as a better cooling conductor compared to a thicker one. The skin friction is reduced in the case of a thinner bullet-shaped object compared to a thicker one. The present analysis reveals that the heat transfer rate and the friction factor may be helpful in industrial sectors for controlling the cooling rate and quality of the final product. This research brings forward to increase in the rate of heat transfer inside the boundary layer region. The result may help to design the various types of moving objects in the automobile engineering sector when the objects pass through the fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.