Abstract

A verification benchmark has been carried out between the M3D-C1 and NIMROD extended-magnetohydrodynamic codes for simulations of impurity-induced disruption mitigation. Disruptions are a significant concern for future tokamaks and high-fidelity simulations are required in order to ensure the success of disruption mitigation techniques (e.g. shattered-pellet injection) in large-scale fusion reactors. Both magnetohydrodynamic (MHD) codes have been coupled to the Killer Pellet RADiation code for impurity dynamics. The codes show excellent agreement in four axisymmetric, nonlinear simulations, particularly during the thermal quench. This agreement is seen in the time histories of global plasma quantities such as thermal energy, radiated power, and total number of electrons, as well as 2D contours of temperature and current density. The simulations predict that, given the same number of atoms injected, argon quenches the plasma two-to-three times as fast as neon. Furthermore, the inclusion of temperature-dependent Spitzer resistivity causes the current to diffuse and to decay, inducing axisymmetric MHD instabilities that result in a current quench. This work represents an important verification of the coupled impurity and MHD models implemented in M3D-C1 and NIMROD, giving greater confidence in the ability of both codes to perform more sophisticated disruption mitigation simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.