Abstract

In this work, a numerical time-domain approach to model acoustic wave propagation in axisymmetric bodies is developed. The acoustic medium is modeled by the Boundary Element Method (BEM), whose time convolution integrals are evaluated analytically, employing the concept of finite part integrals. All singularities for space integration, present at the expressions generated by time integration, are treated adequately. Some applications are presented in order to demonstrate the validity of the analytical expressions generated for the BEM, and the results obtained with the present approach are compared with those generated by applying numerical time integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.