Abstract
It is widely believed that string theory easily allows for a QCD axion in the cosmologically favored mass range. The required small decay constant, fa ≪ MP, can be implemented by using a large compactification volume. This points to the Large Volume Scenario which in turn makes certain cosmological predictions: first, the closed string axion behaves similarly to a field-theoretic axion in the pre-inflationary scenario, i.e. the initial value can be tuned but one is constrained by isocurvature fluctuations. In addition, the volume represents a long-lived modulus that may lead to an early matter-dominated phase. Finally, the decay of the volume modulus to its own axion tends to overproduce dark radiation. In this paper we aim to carefully analyze the cosmology by studying models that not only allow for a QCD axion but also include inflation. Quite generally, limits on isocurvature fluctuations restrict us to relatively low-scale inflation, which in the present stringy context points to Kähler moduli inflation. As a novel feature we find that the lightest (volume) modulus couples strongly to the Higgs. It hence quickly decays to the SM, thus resolving the original dark radiation problem. This decay is much faster than that of the inflaton, implying that reheating is determined by the inflaton decay. The inflaton could potentially reintroduce a dark radiation problem since it decays to lighter moduli and their axions with equal rates. However, due its mixing with the QCD-saxion, the inflaton has also a direct decay rate to the SM, enhanced by the number of SM gauge bosons. This results in an amount of dark radiation that is consistent with present limits but potentially detectable in future measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.