Abstract

We present a study of a class of effective actions which show typical axion-like interactions, and of their possible effects at the Large Hadron Collider. One important feature of these models is the presence of one pseudoscalar which is a generalization of the Peccei–Quinn axion. This can be very light and very weakly coupled, with a mass which is unrelated to its couplings to the gauge fields, described by Wess–Zumino interactions. We discuss two independent realizations of these models, one derived from the theory of intersecting branes and the second one obtained by decoupling one chiral fermion per generation (one right-handed neutrino) from an anomaly-free mother theory. The key features of this second realization are illustrated using a simple example. Charge assignments of intersecting branes can be easily reproduced by the chiral decoupling approach, which remains more general at the level of the solution of its anomaly equations. Using considerations based on its lifetime, we show that in brane models the axion can be dark matter only if its mass is ultralight ( ∼ 10 − 4 eV ), while in the case of fermion decoupling it can reach the GeV region, due to the absence of fermion couplings between the heavy Higgs and the light fermion spectrum. For a GeV axion derived from brane models we present a detailed discussion of its production rates at the LHC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.