Abstract

It is a well-known fact that compact gravitating objects admit bound state configurations for massive bosonic fields. In this work we describe a new class of superradiant instabilities of axion bound states in neutron star magnetospheres. The instability arises from the mixing of axion and photon modes in the magnetic field of the neutron star which extract energy from the rotating magnetosphere. Unlike for black holes, where the dissipation required for superradiance is provided by an absorptive horizon, the non-hermitian dynamics in this paper come from the resistivity in the stellar magnetosphere arising from a finite bulk conductivity. The axion field mixes with photon modes which superradiantly scatter off the magnetosphere, extracting rotational energy which is then deposited back into the axion sector leading to an instability. We derive the superradiant eigenfrequencies for the axion-photon system using quantum mechanical perturbation theory on the axion boundstate, drawing an analogy with atomic selection rules. We then compare the characteristic time scale of the instability to the spin-down measurements of pulsars which limit the allowed rate of angular momentum extraction from neutron stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.