Abstract
This paper proposes a novel classification technology—fuzzy rule-based oblique decision tree (FRODT). The neighborhood rough sets-based FAST feature selection (NRS_FS_FAST) is first introduced to reduce attributes. In the axiomatic fuzzy set theory framework, the fuzzy rule extraction algorithm is then proposed to dynamically extract fuzzy rules. And these rules are regarded as the decision function during the tree construction. The FRODT is developed by expanding the unique non-leaf node in each layer of the tree, which results in a new tree structure with linguistic interpretation. Moreover, the genetic algorithm is implemented on $$\sigma $$ to obtain the balanced results between classification accuracy and tree size. A series of comparative experiments are carried out with five classical classification algorithms (C4.5, BFT, LAD, SC and NBT), and recently proposed decision tree HHCART on 20 UCI data sets. Experiment results show that the FRODT exhibits better classification performance on accuracy and tree size than those of the rival algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.