Abstract

We evaluate the potential of the geographic and within-sediment distribution patterns of rust-coloured shell encrustations on an abundant subtidal bivalve, Axinopsida serricata (Carpenter, 1864) as geochemical indicators of organic enrichment from marine municipal outfalls. The progressive development of shell encrustation over the life of the animals is suggested by heavier encrustations on large shells compared to smaller shells regardless of the geochemical conditions of the habitat. Heavy encrustations decline in an exponential manner at sediment acid volatile sulphide (AVS) levels >7 μmol/g. Analyses show that the reddish shell encrustations are from an amorphous iron oxide or hydroxy-oxide likely micro-biologically mediated; the oxides appear to be embedded within the inner matrix of an organic layer, with a chemically distinct outer layer. A schematic model is proposed which shows how enrichment of labile organic carbon around outfalls affects the availability of dissolved iron in sediments and leads to less extensive encrustations on bivalve shells. Predominantly sandy sediments with low organic loading have much less potential for iron oxide deposition than silty sediments due to greater oxygen penetration into the surface sediment. Shell encrustation appears to be relatively persistent and indicative of long-term conditions, regardless of spatial and temporal fluctuations in sediment geochemistry. With more research on development over the life-cycle of the animal, the pattern of A. serricata shell encrustation has the potential to rapidly provide a map of cumulative labile organic loading and oxygen penetration of sediments around municipal outfalls on the west coast of North America where this species is common. However, caution must be used in interpreting results, since background sediment characteristics (substrate type, bottom currents and sediment transport) can affect encrustation patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call