Abstract

The structure and the evolution of Pulsar Wind Nebulae (PWNe) are studied by means of two-dimensional axisymmetric relativistic magnetohydrodynamic (RMHD) simulations. After the first imaging of the Crab Nebula with Chandra, a growing number of objects has been found to show in the X-rays spatial features such as rings and jets, that clearly cannot be accounted for within the standard framework of one-dimensional semi-analytical models. The most promising explanation suggested so far is based on the combined effects of the latitude dependence of the pulsar wind energy flux, shaping the wind termination shock and naturally providing a higher equatorial emission, and of the wind magnetization, likely responsible for the jet collimation by hoop stresses downstream of the shock. This scenario is investigated here by following the evolution of a PWN interacting with the confining Supernova Remnant (SNR), from the free expansion to the beginning of the reverberation phase. Our results confirm the oblate shape of the wind termination shock and the formation of a polar jet with supersonic velocities () for high enough values of the equatorial wind magnetization parameter ().

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.