Abstract

Guest-induced crystallization of amorphous s-PS fibers, although prepared with slow take-up speeds (e.g., 80 m/min) and in the absence of mechanical stretching, unexpectedly leads to high degrees of axial orientation (0.7 < fc < 0.8) of co-crystalline phases. Similar high degrees of axial orientation can be maintained after suitable guest removal procedures, leading to nanoporous-crystalline (NC) phases. High degrees of orientation are even maintained after high temperature (e.g., 200 °C) treatments leading to dense crystalline α phases, although this phase transition implies change of polymer conformation from helical to zig-zag planar. Hence, guest induced crystallization of amorphous s-PS fibers not only leads to NC forms (suitable for removal of organic pollutants from the environment) or to co-crystalline forms with active guests (e.g., suitable for antimicrobial release) but also lead, without stretching, to axial orientation. For the disordered NC form, fiber patterns are for the first time reported, showing only four diffraction peaks, which suggest the occurrence of a hexagonal packing of chain axes of s(2/1)2 polymer helices. The NC nature of this disordered crystalline form is clearly confirmed by tests of perchloroethylene uptake, from dilute aqueous solutions (500 ppb).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.