Abstract

The isovector axial-vector coupling constant {ital g}{sub {ital A}} is determined by using the method of QCD sum rules. A sum rule for ({ital g}{sub {ital A}}{minus}1) is obtained, and it is shown that, with standard values of the quark condensates, {ital g}{sub {ital A}}=1.26{plus minus}0.08. It is also shown that the isovector axial-vector coupling ({ital g}{sub {ital A}}{minus}1)=0 in the limit in which chiral symmetry is restored, and the quark condensate vanishes. A sum rule is also obtained for the isoscalar'' axial-vector coupling constant {ital g}{sub {ital A}}{sup {ital S}}, which is found to be 0.13 if the isovector values of susceptibilities are used. On the other hand, {ital g}{sub {ital A}}{sup {ital S}}={minus}0.68 if the quark condensate is set to zero while {ital g}{sub {ital A}}{sup {ital S}}={minus}1.00 if both the quark and gluon condensates vanish in the event of chiral-symmetry restoration. The values of {ital g}{sub {ital A}} and {ital g}{sub {ital A}}{sup {ital S}} allow us to deduce {Delta}{ital u} and {Delta}{ital d} in the proton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.