Abstract

In steel design, enhancing the structural joints’ capacity is considered a challenge that faces the designer. This challenge becomes more difficult when it comes to enhancing the capacities of circular hollow section (CHS) joints due to their closed nature that complicates the strengthening process. Recent research related to strengthening T-joints by utilizing two outer hollow ring flanges welded to additional pipe showed that this technique can significantly improve the joints’ strength. In this study, the utilization of this technique is extended for enhancing the axial strength of CHS X-joints. In this regard, a parametric study using finite element models was carried out to investigate the different design aspects that might affect the behavior of strengthened X-joints. The examined parameters included, the ring flange diameter, the stiffening pipe thickness and length for different brace diameter-to-chord diameter ratios and chord diameter to double chord thickness ratio. The results demonstrated that these strengthened X-joints gained significant axial strength that reached up to three times the axial strength of the unstrengthened joints. Guidelines for proper detailing of such strengthening scheme were provided. Finally, an equation that estimates the axial strength of strengthened joints was established based on the achieved results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.