Abstract

We study the axial strain relaxation in GaAs/InAs core-shell nanowire heterostructures grown by molecular beam epitaxy. Besides a gradual strain relaxation of the shell material, we find a significant strain in the GaAs core, increasing with shell thickness. This strain is explained by a saturation of the dislocation density at the core-shell interface. Independent measurements of core and shell lattice parameters by x-ray diffraction reveal a relaxation of 93% in a 35 nm thick InAs shell surrounding cores of 80 nm diameter. The compressive strain of −0.5% compared to bulk InAs is accompanied by a tensile strain up to 0.9% in the GaAs core.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call