Abstract

Axial segregation behaviour of a single biomass particle in a lab-scale bubbling fluidized bed has been investigated from both experimental and modelling perspectives. Experiments were conducted using beech wood particles of different sizes, ranging from 8 to 12 mm under either oxidizing or inert conditions. The fluidized bed reactor was operated at temperatures and fluidization velocity ratios, U/Umf, in the range of 500–650 °C and 1–2, respectively. A one-dimensional model has been developed to predict the axial location of the particle over time, taking into account both dynamic and thermal conversion mechanisms. X-ray imaging techniques allowed to identify endogenous bubbles released during devolatilization and carry out direct measurements of their size. This information was used to propose an expression for the lift force acting on the fuel particle. The model showed very accurate predictions and the segregation behaviour of the fuel particle appeared to be independent of the nature of the fluidizing medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.