Abstract

Harmonic focal point axial modulation (h-FPAM) in nonlinear optical microscopy is introduced and used to enhance the axial resolution and the signal to background ratio by modulating the focal point of a beam of femtosecond pulses train along the axial direction and phase sensitively filtering the resulting signals using a lock-in amplifier. Axial resolution enhancement factor of 2.05 is acquired in 2f detection mode for the third harmonic generation microscopy of glass-oil interfaces. This technique also resolves the image interpretation problem of the fundamental harmonic FPAM technique. Moreover, the potential of this technique for axial sectioning is demonstrated by acquiring images from a red blood cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.