Abstract

We investigated the axial resolution and signal-to-noise ratio (SNR) characteristics in deep-tissue imaging by 1.7-μm optical coherence tomography (OCT) with the axial resolution of 4.3 μm in tissue. Because 1.7-μm OCT requires a light source with a spectral width of more than 300 nm full-width at half maximum to achieve such high resolution, the axial resolution in the tissue might be degraded by spectral distortion and chromatic dispersion mismatching between the sample and reference arms. In addition, degradation of the axial resolution would also lead to reduced SNR. Here, we quantitatively evaluated the degradation of the axial resolution and the resulting decrease in SNR by measuring interference signals through a lipid mixture serving as a turbid tissue phantom with large scattering and absorption coefficients. Although the axial resolution was reduced by a factor of ∼6 after passing through a 2-mm-thick tissue phantom, our result clearly showed that compensation of the dispersion mismatching allowed us to achieve an axial resolution of 4.3 μm in tissue and improve the SNR by ∼5 dB compared with the case where dispersion mismatching was not compensated. This improvement was also confirmed in the observation of a hamster’s cheek pouch in a buffer solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.