Abstract

Learning and studying the structure-activity relationship in the bio-enzymes is conducive to the design of nanozymes for energy and environmental application. Herein, Fe single-atom nanozymes (Fe-SANs) with Fe-N5 site, inspired by the structure of cytochromes P450 (CYPs), are developed and characterized. Similar to the CYPs, the hyperoxide can activate the Fe(III) center of Fe-SANs to generate Fe(IV)O intermediately, which can transfer oxygen to the substrate with ultrafast speed. Particularly, using the peroxymonosulfate (PMS)-activated Fe-SANs to oxidize sulfamethoxazole, a typical antibiotic contaminant, as the model hyperoxides activation reaction, the excellent activity within 284 min-1 g-1 (catalyst) mmol-1 (PMS) oxidation rate and 91.6% selectivity to the Fe(IV)O intermediate oxidation are demonstrated. More importantly, instead of promoting PMS adsorption, the axial N ligand modulates the electron structure of FeN5 SANs for the lower reaction energy barrier and promotes electron transfer to PMS to produce Fe(IV)O intermediate with high selectivity. The highlight of the axial N coordination in the nanozymes in this work provides deep insight to guide the design and development of nanozymes nearly to the bio-enzyme with excellent activity and selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.