Abstract
An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a multi-layer few-mode fiber (ML-FMF), and could acquire the change of the axial strain along fibers, which depends on the transmission dips. On account of the distinct dual-mode property, a good stability of this sensor is realized. The two transmission dips could have the different sensing behaviors. Both the propagation characteristics and operation principle of such a sensor are demonstrated in detail. High sensitivity of the FM-FBG, ~4 pm/με and ~4.5 pm/με within the range of 0 με - 1456 με, is experimentally achieved. FM-FBGs could be easily scattered along one fiber. So this sensor may have a great potential of being used in sensor networks.
Highlights
In recent years, in-fiber strain sensors based on Fiber Bragg gratings (FBGs) have been paid more attention in monitoring the axial micro-strain, and their unique advantages show a high degree of accuracy, fast response, high immunity to electromagnetic interference, long-range operation capability, low cost and easy to manufacture [1]
This Few Mode Fiber Bragg Grating (FM-FBG) is in inscribed in a multi-layer few-mode fiber (ML-FMF), and could acquire the change of the axial strain along fibers, which depends on the transmission dips
Compared with the traditional temperature sensing scheme, the strain FBG sensor based on a dual mode multi-layer few-mode fiber (ML-FMF) in this paper takes into account the well characteristics of simple structure and well sensitivity
Summary
In-fiber strain sensors based on Fiber Bragg gratings (FBGs) have been paid more attention in monitoring the axial micro-strain, and their unique advantages show a high degree of accuracy, fast response, high immunity to electromagnetic interference, long-range operation capability, low cost and easy to manufacture [1]. The sensing principle of the FBG sensor is based on the demodulation of the reflection spectra in response to strain [2] [3], temperature [4] [5], surrounding refractive indexes (SRI), pressure [6] [7], acceleration [8], and tilt angle [9]. It has already been widely utilized in FBG sensors, application scenarios ranging from strain, temperature, solution concentration and refractive index [10]-[15]. Compared with the traditional temperature sensing scheme, the strain FBG sensor based on a dual mode multi-layer few-mode fiber (ML-FMF) in this paper takes into account the well characteristics of simple structure and well sensitivity. The propagation characteristic and operation principle of this advanced sensor is introduced meticulously
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.