Abstract

The dynamics and characteristics of the plasma sheath during the axial phase in a ∼300 kA, ∼2 kJ dense plasma focus using a static gas load of Ne at 1–4 Torr are reported. The sheath, which is driven axially at a constant velocity ∼105 m/s by the j × B force, is observed using optical imaging, to form an acute angle between the electrodes. This angle becomes more acute (more parallel to the axis) along the rundown. The average sheath thickness nearer the anode is 0.69 ± 0.02 mm and nearer the cathode is 0.95 ± 0.02 mm. The sheath total mass increases from 1 ± 0.02 μg to 6 ± 0.02 μg over the pressure range of 1–4 Torr. However, the mass fraction (defined as the sheath mass/total mass of cold gas between the electrodes) decreases from 7% to 5%. In addition, the steeper the plasma sheath, the more mass is lost from the sheath, which is consistent with radial and axial motion. Experimental results are compared to the Lee code when 100% of the current drives the axial and radial phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call