Abstract
In this paper, two types of water-lubricated hydrostatic conical bearings with spiral grooves for high-speed spindles are investigated. One has a rigid bearing surface and the other has a compliant one. In these bearings, pressurized water is first fed to the inside of the rotating shaft and then introduced into spiral grooves through feeding holes. Therefore, water pressure is increased due to the effect of the centrifugal force at the outlets of the feeding holes by shaft rotation and, furthermore, water pressure is also increased by the viscous pump effect of spiral grooves. The static characteristics of these bearings are theoretically predicted and calculated results are compared with experimental results. It was found that the compliant surface bearing had a larger load capacity in a relatively large bearing clearance than the rigid surface bearing, and lower bearing power consumption in a small bearing clearance although the load capacity is reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.