Abstract

A cobalamin (Cbl) cofactor in corrinoid iron-sulfur protein (CoFeSP) is the primary methyl group donor and acceptor in biological carbon oxide conversion along the reductive acetyl-CoA pathway. Changes of the axial coordination of the cobalt ion within the corrin macrocycle upon redox transitions in aqua-, methyl-, and cyano-Cbl bound to CoFeSP or in solution were studied using X-ray absorption spectroscopy (XAS) at the Co K-edge in combination with density functional theory (DFT) calculations, supported by metal content and cobalt redox level quantification with further spectroscopic methods. Calculation of the highly variable pre-edge X-ray absorption features due to core-to-valence (ctv) electronic transitions, XANES shape analysis, and cobalt-ligand bond lengths determination from EXAFS has yielded models for the molecular and electronic structures of the cobalt sites. This suggested the absence of a ligand at cobalt in CoFeSP in α-position where the dimethylbenzimidazole (dmb) base of the cofactor is bound in Cbl in solution. As main species, (dmb)CoIII(OH2), (dmb)CoII(OH2), and (dmb)CoIII(CH3) sites for solution Cbl and CoIII(OH2), CoII(OH2), and CoIII(CH3) sites in CoFeSP-Cbl were identified. Our data support binding of a serine residue from the reductive-activator protein (RACo) of CoFeSP to the cobalt ion in the CoFeSP-RACo protein complex that stabilizes Co(II). The absence of an α-ligand at cobalt not only tunes the redox potential of the cobalamin cofactor into the physiological range, but is also important for CoFeSP reactivation.

Highlights

  • The cobalamin cofactor (Cbl, denoted vitamin B12) since its discovery in 1925 has attracted much research interest [1,2,3,4]

  • Cobalamin (Cbl) species were investigated when bound to the CoFeSP enzyme, in the CoFeSP-reductive-activator protein (RACo) protein complex, and in solution samples serving as reference materials

  • The increased Fe to Co ratio of 6.5 in the CoFeSP-AqCbl-RACo sample was in good agreement with two additional Fe ions in the sample compared to CoFeSP-AqCbl, due to the presence of close to one RACo protein containing a [2Fe2S] cluster per CoFeSP

Read more

Summary

Introduction

The cobalamin cofactor (Cbl, denoted vitamin B12) since its discovery in 1925 has attracted much research interest [1,2,3,4]. Cbl is essential for all mammals [5] and in bacteria it is involved in carbon oxide (COx) conversion pathways related to potential renewable energy applications [6, 7]. Anaerobic CO2 reduction along the bacterial Wood-Ljungdahl pathway includes several unique enzymes [8, 9]. The corrinoid iron-sulfur protein (CoFeSP) carries a Cbl cofactor [10, 11] and shuttles a methyl group from methyl-transferase bound methyl-. Cobalamin in CoFeSP Studied by XAS and DFT design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.