Abstract
Using the Rayleigh-Sommerfeld theory of diffraction we obtain an exact expression for the axial irradiance of a focused annular laser beam valid for all axial points. Conditions for the validity of the Fresnel theory are obtained. We discuss why and how the depth of focus and asymmetry of focused fields about the focal plane depend on the Fresnel number of the beam aperture as observed from the geometric focus. When a beam is focused on a distant target so that the Fresnel number is small (≲5), the principal maximum of axial irradiance occurs at a point which is significantly away from the geometric focus in the direction of the aperture. We discuss how to optimally focus a beam to illuminate a moving distant target in terms of the encircled energy on it. We show that, to obtain the maximum possible concentration of energy on a target, the beam must be focused on it, thus requiring active focusing for a moving target. However, if energy concentration is adequate for a beam focused on a target at a certain distance, it is more than adequate for a considerable range of the distance of a moving target without active focusing. In a shared-aperture optical system the aperture used for focusing a beam on the target is also used for imaging the target. Hence, in such a system the optical transfer function is also more than adequate over a wide range of the target distance without active focusing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.