Abstract

For strain sufficiently small such that Hooke's Law is valid, it is shown that only a linear model for axial deformation of rotating rods can be derived. As discussed in the literature, this linear model exhibits an instability when the angular speed reaches a certain critical value. However, unless this linear model is valid for large strain, it is impossible to determine whether this instability really exists; because, as the angular speed is increased, the strain becomes large well short of the critical speed. Next, axial deformation of rotating rods is analyzed using two strain energy functions to model non-linear elastic behavior. The first of these functions is the usual quadratic strain energy function augmented with a cubic term. With this model it is shown that no instability exists if the non-linearity is stiffening (i.e. if the coefficient of the cubic term is positive), although the strain can become large. If the non-linearity is of the softening variety, then the critical angular speed drops as the degree of softening increases. Still, the strains are large enough that, except for rubber-like materials, a non-linear elastic model is not likely to be appropriate. The second strain energy function is based on the square of the logarithmic strain and yields a softening model. It quite accurately models the behavior of certain rubber rods which exhibit the instability within the validated range of elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.