Abstract

Two types of novel anticorrosive ceramic internals, the hybrid ceramic internal and ceramic plate, are designed and tested under pilot conditions for future industrial application in lithium extraction from salt lake brine. A standard liquid–liquid system with medium interfacial tension, 30% TBP in Shellsol 2046–water with acetic acid as solute, is used to test axial dispersion and mass-transfer parameters, which are important to determine height of extraction columns, over a range of operating conditions. Results show that the hybrid ceramic internal has 50% lower axial dispersion coefficient and 50% higher mass-transfer coefficient, both contributing to better mass-transfer performance. Under proper operating conditions, the height of the transfer unit of the hybrid ceramic internal can reach as low as approximately 0.2 m, which shows very good efficiency and makes it promising for application in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.