Abstract

The behaviour of thin tubes made of sheet metal and not so thin extruded tubes filled with wood and subjected to axial crushing is studied. Experiments show that the mode of elastic buckling is changed by the presence of the wood filler. The plastic crushing of thin tubes resulted in Euler-type buckling, while a considerable enhancement in the load carrying capacity and energy absorption was seen in the case of thicker walled tubes which were examined both under quasi-static and dynamic loading conditions. A new idealized deformation mechanism for the progressive crushing of the wood-filled tube is suggested and analysed. The results obtained for the mean loads agree reasonably with experimental observations. An alternative method employed to predict the mean crushing load of empty tubes and using a thickness that provides an equivalent stiffness to that of a filled tube is also seen to produce reasonable agreement with the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.