Abstract

Bamboo is a unique fiber-reinforced bio-composite with fibers embedded into a parenchyma cell matrix. We conducted axial compression tests on bamboo blocks prepared from bottom to top, and from inner to outer portions of the culm. The apparent Young’s modulus and compressive strength of whole thickness bamboo blocks exhibited slight increases with increasing height along the culm, due to slight increases of fiber volume fraction (Vf) from 28.4 to 30.4%. Other blocks showed a significant increase in apparent Young’s modulus and strength from the inner to outer part of the culm wall, mainly owing to a sharp increase of Vf from 17.1 to 59.8%. With a decrease of fiber fraction volume there was a transition from relatively brittle behavior to very ductile behavior in bamboo blocks. Results indicated that stiffness and strength of bamboo was primarily due to fiber in compression, and ductility of bamboo was provided by the parenchyma cell matrix acting as a natural fiber-reinforced composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.