Abstract

This study aimed to investigate the axial compression performance of concrete-filled circular-end aluminum tube (RECFAT) columns, utilizing four specimens with varying parameters such as cross-sectional aspect ratio and cross-sectional aluminum content. Axial compression tests and ABAQUS finite element extended parameter analyses were conducted, with key mechanical performance indicators such as specimen failure morphology, ultimate bearing capacity, load–displacement curve, and load–strain curve being obtained. The influence of various variation parameters on the axial compression performance of the specimen was analyzed. The results indicated that the majority of specimens underwent oblique shear failure due to local bulging of the aluminum tube plane, while specimens with an aspect ratio of 4.0 experienced overall instability failure. As the aspect ratio increased, the bearing capacity improvement coefficient and ductility coefficient of the specimen decreased and the initial stiffness of the specimen gradually decreased. As the aluminum content increased, the initial stiffness decreased, with the critical aspect ratio for overall instability being between 2.0 and 2.5. The optimal aluminum content was recommended to be between 8.5% and 13.5%. When the aspect ratio was around 2.0, the lateral strain of the round-ended aluminum tube developed faster and the constraint effect was the best. The finite element model accurately reproduced the oblique shear bulging of the round-ended aluminum tube and the internal concrete V-shaped collapse, with the axial load–displacement curve being in good agreement. Improving the strength of aluminum alloy was more conducive to improving the axial compression bearing capacity of RECFAT than increasing the strength of concrete. A simplified model and calculation method for RECFAT was proposed, with an error of less than 1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call