Abstract

Concrete-filled stainless-clad bimetallic steel tube (CFSCBST) members combines the advantages of excellent corrosion-resistance and good economy compared with conventional concrete-filled steel tube (CFST) members, which has great prospects in engineering application. This paper presents a comprehensive experimental and numerical investigation into the axial compression behaviour of CFSCBST stub columns with square sections. A total of eight specimens was conducted on CFSCBST specimens, incorporating varying width-to-thickness ratios, clad ratios and steel strengths, The experimental investigation provided a detailed report on failure modes, load versus displacement and strain response. The experimental results were utilized in a parallel numerical simulation to validate the finite element (FE) model. Subsequently, an extended parametric analysis was conducted to investigate the influence of the strength of the concrete, the substrate steel grade, the clad ratio, and the width-to-thickness ratio were carried out. The data obtained from tests and numerical studies were used to evaluate the applicability of existing design codes AISC/ANSI 360-22, EN 1994–1-1, GB 50936–2014 and DBJ/T 13-51-2020 for predicting the compressive capacity of square CFSCBST stub columns. Overall, a modified design method was proposed, adapted from DBJ/T 13-51-2020, was proposed for CFSCBST stub columns, demonstrating enhanced accuracy in predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call