Abstract

This study developed a finite element model (FEM) and reported parametric and analytical studies on the axial compression behaviors of shear-keyed tubular columns in modular steel structures (MSS). The accuracy of the developed FEM was validated using 36 tests in references. The parametric study designed 108 FEMs to investigate initial imperfection, shear-key height (Lt), thickness (tt), steel tube length (D), width (B), thickness (tc), and height (Lc) influence. The typical load-shortening response showed elastic, inelastic, and recession stages, with failure modes of inward and outward sinusoidal pairs of local buckling. Increasing tt, Lt, tc, D, or B improved strength and stiffness, while Lc or slenderness (Lc/r) adversely affected the stiffness and ductility linearly. Besides, it ensured by validations that prediction equations in conventional design standards overestimated the compressive resistance, requiring modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call