Abstract
The usage of high-temperature superconducting (HTS) coils in magnetically-coupled resonant wireless power transfer (WPT) systems can considerably improve the transfer efficiency, and hence it attacked great attention. However, there are few studies on offset characteristics in HTS WPT systems. In order to further improve the performance of HTS WPT systems, we have studied experimentally the influences of relative displacement of the coils on the transfer efficiency and load receiving power (LRP) in a magnetically-coupled resonant WPT system. The WPT systems using copper coils and HTS coils were carefully compared. The results show that the transfer efficiency decreases monotonically with the increasing offset. However, there is an optimal position for the LRP to achieve the maximum value. Both the transfer efficiency and LRP of the HTS WPT system are higher than those of the copper WPT system under the same conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.