Abstract

Conductive coatings show great promise for next-generation electromagnetic interference (EMI) shielding challenges on textile; however, their stringent requirements for electrical conductivity are difficult to meet by conventional approaches of increasing the loading and homogeneity of conductive nanofillers. Here, the axial alignment of carbon nanotubes (CNTs) on fibers that were obtained by spontaneous capillary-driven self-assembly is shown on commercial cotton fabrics, and its great potential for EMI shielding is demonstrated. The aligned CNTs structurally optimize the conductive network on fabrics and yield an 81-fold increase in electrical conductivity per unit of CNT, compared with the disordered CNT microstructure. The high-efficiency electrical conductivity allows a several-micron-thick coating on insulating fabrics to endow an EMI shielding effectiveness of 21.5 dB in the X band and 20.8 dB in the Ku band, which meets the standard shielding requirement in commercial applications. It is among the minimum reported thicknesses for conductive nanocomposite coatings to date. Moreover, the coated fabrics with aligned CNTs possess a desirable stability upon bending, scratching, stripping, and even washing, which is attributed to the dense CNT packing in the aligned microarchitecture. This work presents the anisotropic structure on large areas by self-assembly, offering new opportunities for next-generation portable and wearable electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.