Abstract

With the rising popularity of web-based applications, the primary and consistent resource in the infrastructure of World Wide Web are cluster-based web servers. Overtly in dynamic contents and database driven applications, especially at heavy load circumstances, the performance handling of clusters is a solemn task. Without using efficient mechanisms, an overloaded web server cannot provide great performance. In clusters, this overloaded condition can be avoided using load balancing mechanisms by sharing the load among available web servers. The existing load balancing mechanisms which were intended to handle static contents will grieve from substantial performance deprivation under database-driven and dynamic contents. The most serviceable load balancing approaches are Web Server Queuing (WSQ), Server Content based Queue (QSC) and Remaining Capacity (RC) under specific conditions to provide better results. By Considering this, we have proposed an approximated web server Queuing mechanism for web server clusters and also proposed an analytical model for calculating the load of a web server. The requests are classified based on the service time and keep tracking the number of outstanding requests at each webserver to achieve better performance. The approximated load of each web server is used for load balancing. The investigational results illustrate the effectiveness of the proposed mechanism by improving the mean response time, throughput and drop rate of the server cluster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.