Abstract

Immunodissected rabbit cortical collecting duct (CCD) cells were grown in primary culture on permeable membrane supports. Transepithelial voltage, Na+, K+, and H+ gradients developed as expected for a mixed population of principal and intercalated cells. The amiloride-sensitive short-circuit current (Isc) was measured in Ussing chambers as an index of Na+ transport via apical membrane Na+ channels. Treatment of the cells in culture with 10 nM aldosterone for 48 h increased Isc from 7.4 +/- 1.4 to 19.3 +/- 3.2 microA/cm2. In contrast to the native rabbit CCD, 220 pM arginine vasopressin (AVP) produced a rapid and stable (greater than 60 min) increase in Isc to 15.8 +/- 2.0 and 29.0 +/- 3.8 microA/cm2 in untreated and aldosterone-treated cultures, respectively. Although prostaglandin E2 (PGE2) inhibits Na+ transport in the native rabbit CCD, it did not in the cultured cells, and it has previously been shown that PGE2 inhibition of AVP-dependent adenosine 3',5'-cyclic monophosphate production is lost in culture (W. K. Sonnenburg and W. L. Smith, J. Biol. Chem. 263: 6155-6160, 1988). We conclude that the development of a stable stimulation of Na+ transport by AVP is linked to the loss of the inhibitory effects of PGE2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call