Abstract

Iterative projection methods may become trapped at non-solutions when the constraint sets are nonconvex. Two kinds of parameters are available to help avoid this behavior and this study gives examples of both. The first kind of parameter, called a hyperparameter, includes any kind of parameter that appears in the definition of the iteration rule itself. The second kind comprises metric parameters in the definition of the constraint sets, a feature that arises when the problem to be solved has two or more kinds of variables. Through examples we show the importance of properly tuning both kinds of parameters and offer heuristic interpretations of the observed behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.