Abstract
Saline-sodic soils are often too saline and alkaline for plant survival. These soils are prone to dispersing and eroding after high rainfall events when salinity is reduced before the sodicity. Cost-effective and water efficient methods are needed to leach salts while maintaining sufficient ionic strength of the soil solution. We tested the ability of gypsum, both alone and combined with elemental sulfur and organic matter to remediate the upper 15 cm of a strongly saline-sodic alkaline Vertosol when leached with deionised water in repacked columns. Prior to leaching, all amendment combinations reduced soil alkalinity by 80% and dispersion by 47% by displacing exchangeable sodium (Na). After leaching with 600 mm of deionised water, electrical conductivity of the soil solution (ECss) decreased from an average of 38–4.8 dS m−1 at 8 cm depth. Importantly, structure was maintained in all amended soils, despite this decrease in ECss. In contrast, for the control treatment, there was a concomitant loss of soil structural stability as ECss decreased. This decrease in stability also occurred in the subsoils of all treatments (which were not amended) because the applied calcium (Ca) precipitated before it could be leached to remediate the deeper layers. This study demonstrated that it was critical to first apply amendments as deep in the soil profile as possible to prevent the development of a non-saline sodic soil. Leaching the soil with low ionic strength water removed excess soluble salts from the plant root zone. We estimated that > 300 mm of water (rainfall or irrigation) was required to leach through the root zone to ensure a suitable soil profile for establishing of salt tolerant pioneer species such as Rhodes grass (Chloris gayana Kunth).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.