Abstract

Titanium (Ti) samples with oxygen contents of 0.13% (weight %) (0.13%O-Ti), 0.18% (0.18%O-Ti) and 0.24% (0.24%O-Ti) are printed through laser powder bed fusion (L-PBF) process. With increasing oxygen content, yield strength of L-PBF Ti under tensile testing increases without losing ductility, and becomes larger than that of conventionally produced Ti. Probably this is not resulted from even oxygen distribution, because nano-scale oxygen segregation is observed in 0.24%O-Ti through high-resolution scanning transmission electron microscopy (STEM). In order to get insight into fundamental mechanism of the oxygen-induced early fracture avoidance and high strength, tensile testing of L-PBF Ti is followed by quasi-in-situ electron backscatter diffraction (EBSD)/backscattered electron microscopy (BSEM). It is found that avoidance of the oxygen-induced early fracture and high strength are probably attributed to extensive entangled grains, which promotes formation of multiple slip systems and prevents the propagation of intergranular crack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.