Abstract

This paper is concerned with the long wavelength instabilities (infrared catastrophes) occurring in Bose-Einstein condensates (BECs). We examine the modulational instability in ``cigar-shaped'' (1D) attractive BECs and the transverse instability of dark solitons in ``pancake'' (2D) repulsive BECs. We suggest mechanisms, and give explicit estimates, on how to ``engineer'' the trapping conditions of the condensate to avoid such instabilities: the main result being that a tight enough trapping potential suppresses the instabilities present in the homogeneous limit. We compare the obtained estimates with numerical results and we highlight the relevant regimes of dynamical behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.