Abstract

The performance of speech-based depression detectors is limited by the scarcity and imbalance in depression data. We found that depression detectors could be strongly biased toward speaker features when the number of training speakers is insufficient. To address this issue, we propose a speaker-invariant depression detector (SIDD) that minimizes speaker information in the latent space. The SIDD consists of an autoencoder, a depression classifier, and a speaker-embedding projector. By incorporating speaker-embedding vectors into the autoencoder’s latent vectors, speaker information is effectively eliminated for the depression classifier. Experimental results demonstrate significant improvements achieved by minimizing speaker information, and our proposed method generally outperforms previous approaches for depression detection on the DAIC-WOZ dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.