Abstract
The use of interfacial layers to stabilize the lithium surface is a popular research direction for improving the morphology of deposited lithium and suppressing lithium dendrite formation. This work considers a different approach to controlling dendrite formation where lithium is plated underneath an interfacial coating. In the present research, a Li–Sn intermetallic was chosen as a model system due to its lithium-rich intermetallic phases and high Li diffusivity. These coatings also exhibit a significantly higher Li exchange current than bare Li thus leading to better charge transfer kinetics. The exchange current is instrumental in determining whether lithium deposition occurs above or below the Li–Sn coating. High-resolution transmission electron microscopy and cryogenic focused ion beam scanning electron microscopy were used to identify the features associated with Li deposition. Atomic scale simulations provide insight as to the adsorption energies determining the deposition of lithium below the Li–Sn coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.