Abstract
Chemical-looping combustion (CLC) is a combustion process with inherent separation of carbon dioxide (CO2), which is achieved by oxidizing the fuel with a solid oxygen carrier rather than with air. As fuel and combustion air are never mixed, no gas separation is necessary and, consequently, there is no direct cost or energy penalty for the separation of gases. The most common form of design of chemical-looping combustion systems uses circulating fluidized beds, which is an established and widely spread technology. Experiments were conducted in two different laboratory-scale CLC reactors with continuous fuel feeding and nominal fuel inputs of 300 Wth and 10 kWth, respectively. As an oxygen carrier material, ground steel converter slag from the Linz–Donawitz process was used. This material is the second largest flow in an integrated steel mill and it is available in huge quantities, for which there is currently limited demand. Steel converter slag consists mainly of oxides of calcium (Ca), magnesium (Mg), iron (Fe), silicon (Si), and manganese (Mn). In the 300 W unit, chemical-looping combustion experiments were conducted with model fuels syngas (50 vol% hydrogen (H2) in carbon monoxide (CO)) and methane (CH4) at varied reactor temperature, fuel input, and oxygen-carrier circulation. Further, the ability of the oxygen-carrier material to release oxygen to the gas phase was investigated. In the 10 kW unit, the fuels used for combustion tests were steam-exploded pellets and wood char. The purpose of these experiments was to study more realistic biomass fuels and to assess the lifetime of the slag when employed as oxygen carrier. In addition, chemical-looping gasification was investigated in the 10 kW unit using both steam-exploded pellets and regular wood pellets as fuels. In the 300 W unit, up to 99.9% of syngas conversion was achieved at 280 kg/MWth and 900 °C, while the highest conversion achieved with methane was 60% at 280 kg/MWth and 950 °C. The material’s ability to release oxygen to the gas phase, i.e., CLOU property, was developed during the initial hours with fuel operation and the activated material released 1–2 vol% of O2 into a flow of argon between 850 and 950 °C. The material’s initial low density decreased somewhat during CLC operation. In the 10 kW, CO2 yields of 75–82% were achieved with all three fuels tested in CLC conditions, while carbon leakage was very low in most cases, i.e., below 1%. With wood char as fuel, at a fuel input of 1.8 kWth, a CO2 yield of 92% could be achieved. The carbon fraction of C2-species was usually below 2.5% and no C3-species were detected. During chemical-looping gasification investigation a raw gas was produced that contained mostly H2. The oxygen carrier lifetime was estimated to be about 110–170 h. However, due to its high availability and potentially low cost, this type of slag could be suitable for large-scale operation. The study also includes a discussion on the potential advantages of this technology over other technologies available for Bio-Energy Carbon Capture and Storage, BECCS. Furthermore, the paper calls for the use of adequate policy instruments to foster the development of this kind of technologies, with great potential for cost reduction but presently without commercial application because of lack of incentives.
Highlights
IntroductionChemical-looping combustion (CLC) is a carbon-capture technology with a potential to drastically reduce the cost of carbon dioxide (CO2) sequestration
1.1 Chemical-looping combustion and chemical-looping gasificationFigure 1 shows illustrations of the chemical-looping combustion and chemical-looping gasification principlesChemical-looping combustion (CLC) is a carbon-capture technology with a potential to drastically reduce the cost of carbon dioxide (CO2) sequestration
This was done by monitoring the oxygen released in the fuel reactor, which was fluidized with argon
Summary
Chemical-looping combustion (CLC) is a carbon-capture technology with a potential to drastically reduce the cost of carbon dioxide (CO2) sequestration. The most common adaptation of chemical-looping combustion is based on two interconnected, chemical reactors: in the air reactor (AR), air is used to oxidize a solid oxygen-carrier, and in the fuel reactor (FR), fuel is added and oxidized by the oxygen carrier, which, in turn, is reduced. In this way, the combustion products are not diluted with nitrogen and, after condensation of steam, the fuelreactor flue gas ideally consists of pure CO2. The most commonly proposed way to design a chemical-looping combustor is to use circulating fluidized-beds (CFBs) with oxygen-carrier particles as bed material instead of an inert bed material as used in conventional applications
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mitigation and Adaptation Strategies for Global Change
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.