Abstract
BackgroundAutomatic literature based discovery attempts to uncover new knowledge by connecting existing facts: information extracted from existing publications in the form of A rightarrow B and B rightarrow C relations can be simply connected to deduce A rightarrow C. However, using this approach, the quantity of proposed connections is often too vast to be useful. It can be reduced by using subjectrightarrow(predicate)rightarrowobject triples as the A rightarrow B relations, but too many proposed connections remain for manual verification.ResultsBased on the hypothesis that only a small number of subject–predicate–object triples extracted from a publication represent the paper’s novel contribution(s), we explore using BERT embeddings to identify these before literature based discovery is performed utilizing only these, important, triples. While the method exploits the availability of full texts of publications in the CORD-19 dataset—making use of the fact that a novel contribution is likely to be mentioned in both an abstract and the body of a paper—to build a training set, the resulting tool can be applied to papers with only abstracts available. Candidate hidden knowledge pairs generated from unfiltered triples and those built from important triples only are compared using a variety of timeslicing gold standards.ConclusionsThe quantity of proposed knowledge pairs is reduced by a factor of 10^3, and we show that when the gold standard is designed to avoid rewarding background knowledge, the precision obtained increases up to a factor of 10. We argue that the gold standard needs to be carefully considered, and release as yet undiscovered candidate knowledge pairs based on important triples alongside this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.