Abstract

Abstract The expanding use of wind farms as a source of renewable energy can impact bird populations due to collisions and other factors. Globally, seabirds are one of the avian taxonomic groups most threatened by anthropogenic disturbance; adequately assessing the potential impact of offshore wind farms (OWFs) is important for developing strategies to avoid or minimize harm to their populations. We estimated avoidance rates of OWFs—the degree to which birds show reduced utilization of OWF areas—by Sandwich Terns (Thalasseus sandvicensis) at 2 breeding colonies in western Europe: Scolt Head (United Kingdom) and De Putten (the Netherlands). The foraging ranges of birds from each colony overlapped with multiple OWFs. We modeled GPS tracking data using integrated step selection functions (iSSFs) to estimate the relative selection of habitats at the scale of time between successive GPS relocations—in our case, 10 min, in which Sandwich Terns traveled ~2 km on average. Besides the effects of OWFs and the direct surroundings of OWFs, iSSFs considered distance from the colony and habitat characteristics (water depth and sediment grain size) as well as movement characteristics. Macro-avoidance rates, where 1 means complete avoidance, were estimated at 0.54 (95% CI: 0.35, 0.7) for birds originating from Scolt Head and 0.41 (95% CI: 0.21, 0.56) for those from De Putten. Estimates for individual OWFs also indicated avoidance but were associated with considerable uncertainty. Our results were inconclusive with regard to the behavioral response to the areas directly surrounding OWFs (within 1.5 km); estimates suggested indifference and avoidance, and were associated with large uncertainty. Avoidance rate of OWFs significantly increased with turbine density, suggesting that OWF design may help to reduce the impact of OWFs on Sandwich Terns. The partial avoidance of OWFs by Sandwich Terns implies that the species will experience risks of collision and habitat loss due to OWFs constructed within their foraging ranges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call