Abstract

We consider massless Quantum Electrodynamics in the momentum scheme and carry forward an approach based on Dyson–Schwinger equations to approximate both the β-function and the renormalized photon self-energy (Yeats, 2011). Starting from the Callan–Symanzik equation, we derive a renormalization group (RG) recursion identity which implies a non-linear ODE for the anomalous dimension and extract a sufficient but not necessary criterion for the existence of a Landau pole. This criterion implies a necessary condition for QED to have no such pole. Solving the differential equation exactly for a toy model case, we integrate the corresponding RG equation for the running coupling and find that even though the β-function entails a Landau pole it exhibits a flat contribution capable of decreasing its growth, in other cases possibly to the extent that such a pole is avoided altogether. Finally, by applying the recursion identity, we compute the photon propagator and investigate the effect of flat contributions on both spacelike and timelike photons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.