Abstract

This work aimed to explore the utility of CT radiomics with machine learning for distinguishing the pancreatic lesions prone to non-diagnostic ultrasound-guided fine-needle aspiration (EUS-FNA). 498 patients with pancreatic EUS-FNA were retrospectively reviewed [Development cohort: 147 pancreatic ductal adenocarcinoma (PDAC); Validation cohort: 37 PDAC]. Pancreatic lesions not PDAC were also tested exploratively. Radiomics extracted from contrast-enhanced CT was integrated with deep neural networks (DNN) after dimension reduction. The receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were performed for model evaluation. And, the explainability of the DNN model was analyzed by integrated gradients. The DNN model was effective in distinguishing PDAC lesions prone to non-diagnostic EUS-FNA (Development cohort: AUC = 0.821, 95% CI: 0.742-0.900; Validation cohort: AUC = 0.745, 95% CI: 0.534-0.956). In all cohorts, the DNN model showed better utility than the logistic model based on traditional lesion characteristics with NRI >0 (p < 0.05). And, the DNN model had net benefits of 21.6% at the risk threshold of 0.60 in the validation cohort. As for the model explainability, gray-level co-occurrence matrix (GLCM) features contributed the most averagely and the first-order features were the most important in the sum attribution. The CT radiomics-based DNN model can be a useful auxiliary tool for distinguishing the pancreatic lesions prone to nondiagnostic EUS-FNA and provide alerts for endoscopists preoperatively to reduce unnecessary EUS-FNA. This is the first investigation into the utility of CT radiomics-based machine learning in avoiding non-diagnostic EUS-FNA for patients with pancreatic masses and providing potential pre-operative assistance for endoscopists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.