Abstract

Tendinopathy, a common disorder in man and horses, is characterized by pain, dysfunction, and tendon degeneration. Inflammation plays a key role in the pathogenesis of tendinopathy. Tendon cells produce proinflammatory molecules that induce pain and tissue deterioration. Currently used nonsteroidal anti-inflammatory drugs are palliative but have been associated with adverse side effects prompting the search for safe, alternative compounds. This study determined whether tendon-derived cells' expression of proinflammatory cyclooxygenase (COX)-2 and production of prostaglandin E2 (PGE2) could be attenuated by the combination of avocado/soybean unsaponifiables (ASU), glucosamine (GLU), and chondroitin sulfate (CS). ASU, GLU, and CS have been used in the management of osteoarthritis-associated joint inflammation. Tenocytes in monolayer and microcarrier spinner cultures were incubated with media alone, or with the combination of ASU (8.3 μg/mL), GLU (11 μg/mL), and CS (20 μg/mL). Cultures were next incubated with media alone, or stimulated with interleukin-1β (IL-1β; 10 ng/mL) for 1 h to measure COX-2 gene expression, or for 24 h to measure PGE2 production, respectively. Tenocyte phenotype was analyzed by phase-contrast microscopy, immunocytochemistry, and Western blotting. Tendon-derived cells proliferated and produced extracellular matrix component type I collagen in monolayer and microcarrier spinner cultures. IL-1β-induced COX-2 gene expression and PGE2 production were significantly reduced by the combination of (ASU+GLU+CS). The suppression of IL-1β-induced inflammatory response suggests that (ASU+GLU+CS) may help attenuate deleterious inflammation in tendons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call